The structure of Escherichia coli signal recognition particle revealed by scanning transmission electron microscopy.

نویسندگان

  • Iain L Mainprize
  • Daniel R Beniac
  • Elena Falkovskaia
  • Robert M Cleverley
  • Lila M Gierasch
  • F Peter Ottensmeyer
  • David W Andrews
چکیده

Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, Characterization and Antibacterial Activity of Manganese Oxide Nanoparticles

Manganese oxide nanoparticles (Mn3O4-NPs) were prepared using precipitation method. The prepared nanoparticles were characterized by a number of techniques, including X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transforms infra red (FT-IR) spectroscopy. The XRD pattern showed that the structure of...

متن کامل

The Structure of Escherichia coli Signal Recognition Particle Revealed by Scanning Transmission Electron Microscopy□D

*Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Canada; †National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Winnipeg R3E 3R2, Canada; ‡Departments of Biochemistry and Molecular Biology and Chemistry, University of Massachusetts, Amherst, MA 01003; §Faculty of Life Sciences, University of Manchester, Manchester M13 9...

متن کامل

Synthesis, morphological, characterization and evaluation of antibacterial effects of Silver-Polyaniline nanocomposites against Escherichia coli

Silver-Polyaniline (Ag-PANI) nanocomposites were prepared by in-situ oxidative polymerization of aniline monomer in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solution as an emulsifier. The synthesis of Silver-Polyaniline nanocomposites was investigated as a function of several parameters such as aniline concentration, concentration of emulsifier (AOT), concentration of oxidation agent and c...

متن کامل

Graphene Oxide Antibacterial Sheets: Synthesis and Characterization (RESEARCH NOTE)

Graphene oxide (GO) was synthesized by oxidation of graphite powder using a time-saving modification of Hummers’ method and its antibacterial activity was investigated. Different techniques were applied to characterize the synthesized GO. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the crystallinity, morphology, topograp...

متن کامل

اثر زمان آسیاکاری بر ساختار، اندازه‌ی ذرات و ریخت شناسی مونت‌موریلونیت

In the current research, effect of milling on the structure, particle size and morphology of montmorillonite was investigated. For this purpose, the montmorillonite was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Then the montmorillonite was milled using high energy planetary ball mill at different milling times (1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 2006